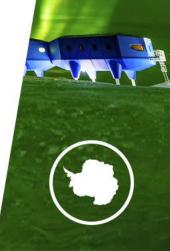
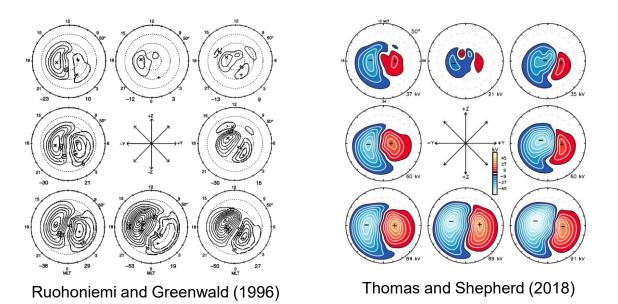
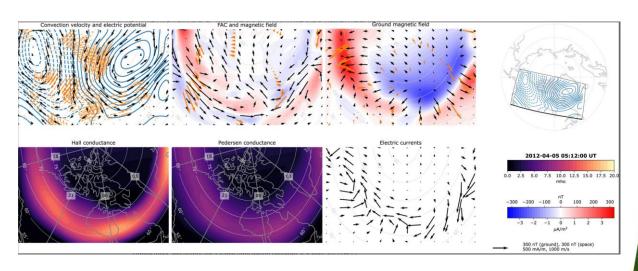

A proposal for a refractive index task force

Gareth Chisham


Space Weather and Atmosphere Team British Antarctic Survey

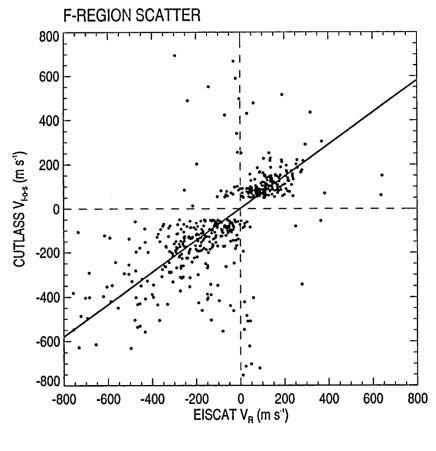
Comparison of climatological CPCPs for different IMF directions, using plasma flow data from: DE2 satellite, DMSP satellites, Cluster satellites, SuperDARN.



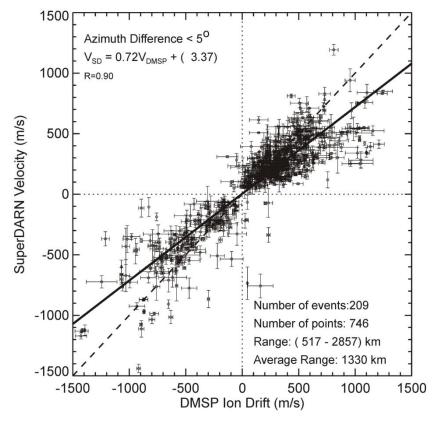


Background

- SuperDARN is presently the only instrument capable of continuous and spatiallyextensive measurements of ionospheric plasma flow.
- Important for the development of empirical models.
- Important for providing detailed and accurate estimates of the flow for data assimilation techniques.



LOMPE - Laundal et al. (2022)


The Issue

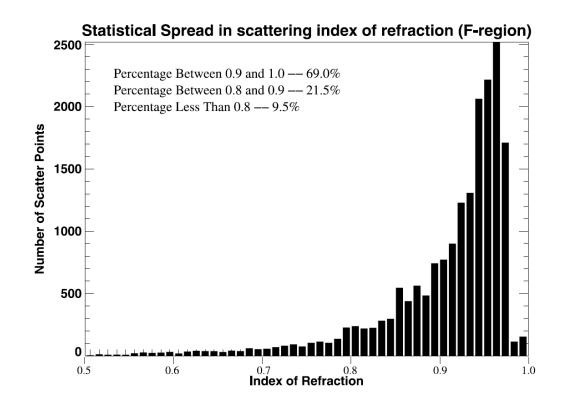
• SuperDARN radars systematically underestimate the magnitude of the ionospheric plasma flow.

CUTLASS Finland-EISCAT Velocity Comparison 1995-1998

Davies et al. (1999)

Drayton et al. (2005)

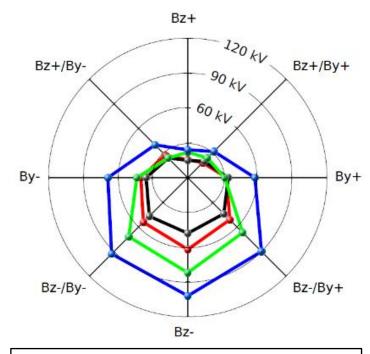
The Issue


 This is due to ionospheric refractive index effects.

region has a refractive index of unity, the apparent line-ofsight velocity of the scatterer, $v_{s,a}$ is

$$v_{s,a} = \frac{\Delta\omega_D c}{2\omega} \tag{1}$$

where $\Delta\omega_D$ is the Doppler shift of the received wave, ω is the frequency of the radar wave, and c is the speed of light in a vacuum [Baker et al., 1995]. However, the speed of the radar wave in a scattering region of refractive index n_s is c/n_s , so the scatterer velocity $v_{s,c}$ accounting for the refractive index is given as [Ginzburg, 1964]


$$v_{s,c} = \frac{\Delta\omega_D c}{2\omega} \frac{1}{n_s} \tag{2}$$

Gillies et al. (2009)

The Impact of the Issue

Comparison of climatological CPCPs for different IMF directions, using plasma flow data from: DE2 satellite, DMSP satellites, Cluster satellites, SuperDARN.

 $\Phi_{ extsf{Min}}^{=-37 ext{ kV}} \Phi_{ extsf{pc}}^{=61.6 ext{ kV}} \Phi_{ extsf{pc}}^{=61.6 ext{ kV}}$ $\Phi_{\text{Min}} = 33.8 \text{ kV} \Phi_{\text{pc}} = 60.2 \text{ kV} \\ \Phi_{\text{Max}} = 27 \text{ kV} \\ \Phi_{\text{Max}} = 27 \text{ kV} \\ \Phi_{\text{Max}} = 27 \text{ kV} \\ \Phi_{\text{Max}} = 20.2 \text{ kV} \\ \Phi_{\text{max}} = 20.2 \text{ kV} \\ \Phi_{\text{pc}} = 60.4 \text{ kV} \\ \Phi_{\text{max}} = 22.1 \text{ kV} \\ \Phi$ Φ_{Max}=27 kV Φ_{Max}=32.3 kV 07 September 2017, 22:00, B, =3.1nT, B, =-9.2nT, V=466km/s, Kp=7.7, Sym-H=-11nT, #SD vecs=92 Φ_{Min}=69.6 kW Φ_{pc}=124 kV Φ_{Min}=99.6 kW Φ_{pc}=178 kV Φ_{Min}=50 kV Φ_{Min}=50 kV Φ_{Min}=69.3 kV Φ_{Min}=69.6 kW Φ_{pc}=90.3 kV Φ_{Max}=54.6 kV Φ_{Max}=78.3 kV Φ_{Max}=78.3 kV Φ_{Max}=33.3 kV Φ_{Max}=34 kV Φ_{Min}=-104 kV Φ_{pc}=186 kV 08 September 2017, 02:00, B_v=-9nT, B_z=-7.7nT, V=780km/s, Kp=8, Sym-H=-128nT, #SD vecs=373 Φ_{Min} =-49.5 kV Φ_{pc} =89.1 kV Φ_{Min}=-91.5 kV Φ_{pc}=163 kV $\Phi_{
m Min}$ =-104 kV $\Phi_{
m pc}$ =186 kV Φ_{Min}=-45.1 kV _{Φ_{DC}=83 kV} Electric potential, kV

HH90, Φ_{Kp}

07 September 2017, 20:00, B,=7.7nT, B,=-1.3nT, V=497km/s, Kp=2.7, Sym-H=18nT, #SD vecs=2

Map potential

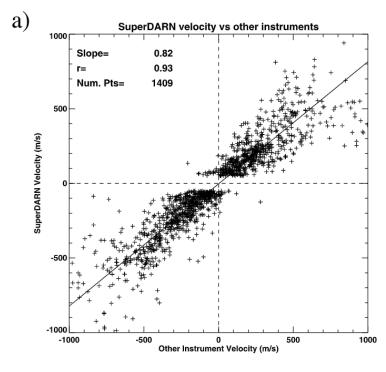
WGS21

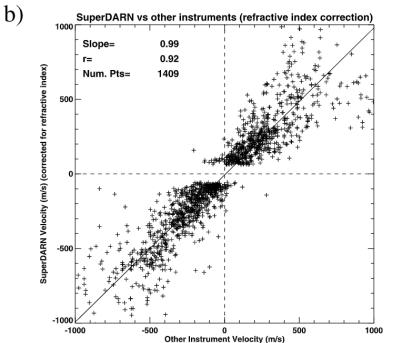
W05

Haaland et al. (2007)

Orr et al. (2023)

The Need


• A state-of-the-art capability for the calibration of line-of-sight velocity measurements.


Table 1. N_e in the Scattering Volume, the Required n_s Adjustment in Percent for SuperDARN Data at Two Representative Radar Frequencies and the Number of Frequency Shifts in Each Regime^a

Latitude (°)	Solar Cycle	Local Time	Season	$(\times 10^{11} \mathrm{m}^{-3})$	n_s Effect (10 MHz, %)	n_s Effect (15 MHz, %)	Number
Mid (<65°)	min	night	all	1.3	5.9	2.5	40926
Mid (<65°)	min	day	all	3.6	19	7.2	1883
Mid (<65°)	max	all	all	1.9	8.8	3.6	20147
Auroral (65°–78°)	min	night	summer	4.0	21	8.0	629332
Auroral (65°–78°)	min	night	winter	3.2	16	6.3	539554
Auroral (65°–78°)	min	day	summer	5.6	35	12	182413
Auroral (65°–78°)	min	day	winter	4.2	23	8.5	573514
Auroral (65°-78°)	max	night	summer	6.1	40	13	1785664
Auroral (65°–78°)	max	night	winter	6.2	41	13	2814188
Auroral (65°–78°)	max	day	summer	5.9	38	13	549376
Auroral (65°–78°)	max	day	winter	5.2	31	11	1170913
Polar (>78°)	min	night	summer	3.3	16	6.4	194954
Polar (>78°)	min	night	winter	2.3	11	4.4	177008
Polar (>78°)	min	day	summer	6.9	50	15	183722
Polar (>78°)	min	day	winter	3.1	15	6.0	246975
Polar (>78°)	max	night	summer	4.3	23	8.6	96095
Polar (>78°)	max	night	winter	2.2	10	4.3	2884168
Polar (>78°)	max	day	summer	8.4	76	20	55949
Polar (>78°)	max	day	winter	2.4	11	4.6	1958548

^aMinimum solar cycle data is from 1993–1998 and 2004–2010, inclusive (maximum solar cycle data is from 1999–2003 and 2011–2012).

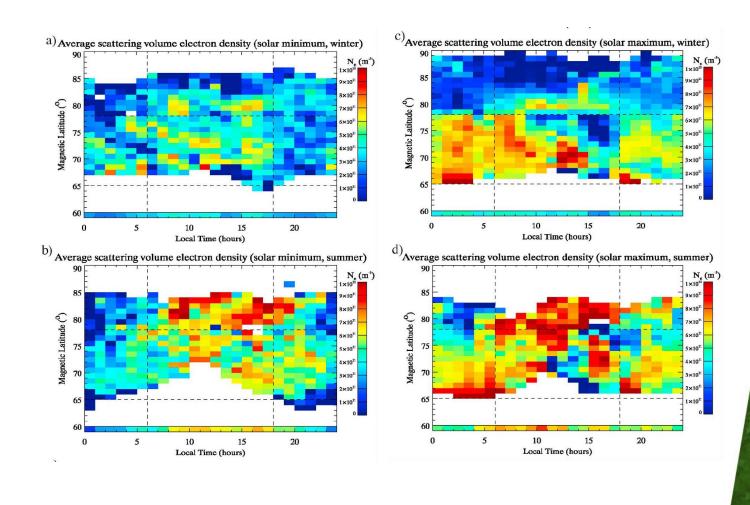
Gillies et al. (2012)

How to Address the Issue? Data-Derived Electron Density

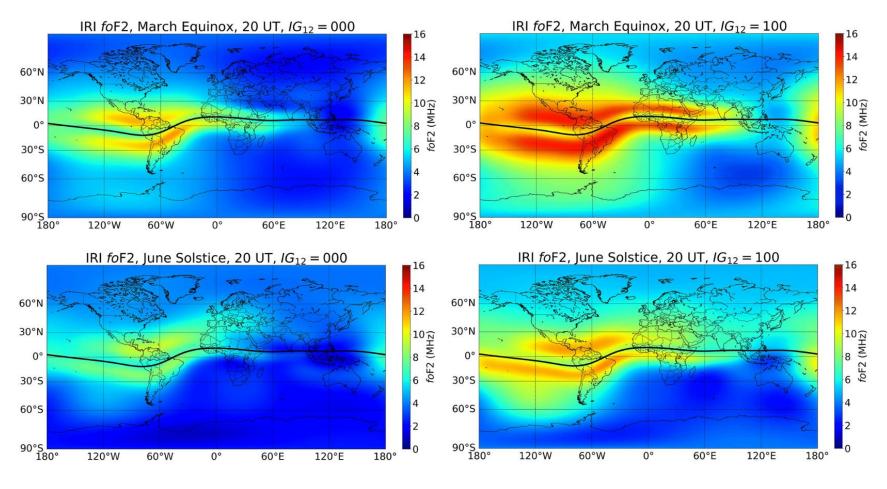
refractive index at the point of scatter (equation (1)). Using this relationship and the dependence of refractive index n_s on radar wave frequency f and plasma frequency f_p :

$$n_s = \sqrt{1 - f_p^2/f^2},$$
 (2)

Gillies et al. [2011] developed the following formula to calculate f_p at the point of scatter given two velocities (v_1 and v_2) at two frequencies (f_1 and f_2):

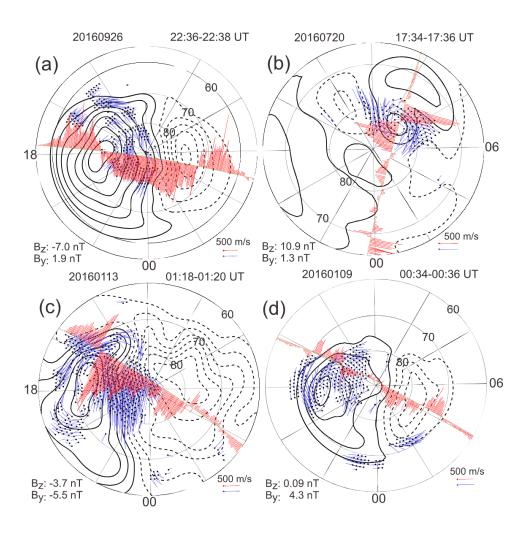

$$f_p^2 = \frac{f_1^2 \left(1 - v_1^2 / v_2^2\right)}{\left(1 - v_1^2 f_1^2 / v_2^2 f_2^2\right)}.$$
 (3)

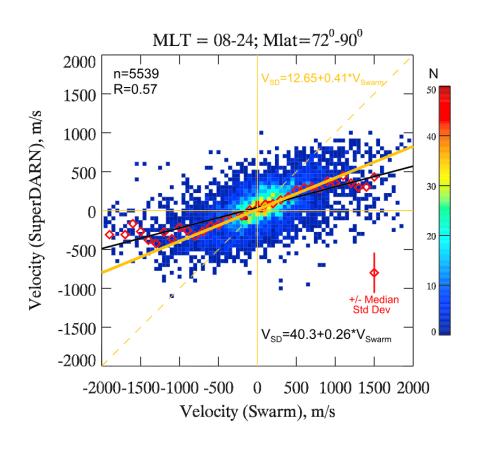
Since f_p (in units of Hz) is related to N_e (in units of m⁻³) by:


$$N_e = 0.0124 f_p^2, (4$$

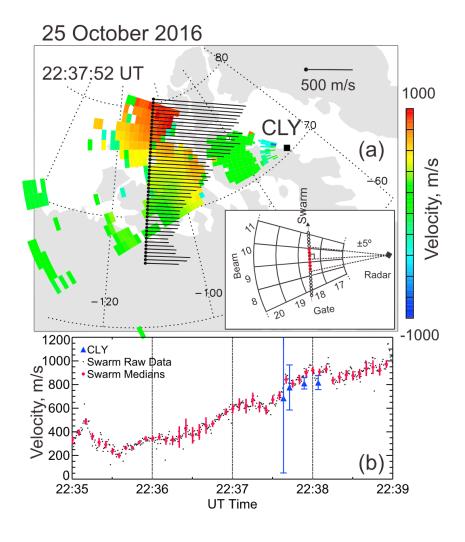
an examination of velocities at two different frequencies will provide a measurement of the scattering volume electron density.

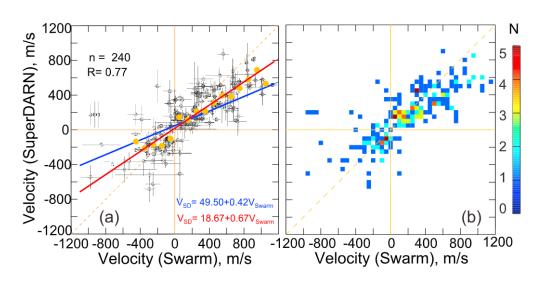
Gillies et al. (2012)




How to Address the Issue? Ionospheric Models, e.g. IRI

Bilitza et al. (2022) – International Reference Ionosphere (IRI)


How to Address the Issue? Velocity Comparison (Convection)



Koustov et al. (2019)

How to Address the Issue? Velocity Comparison (LOS)

Koustov et al. (2019)

Proposition

- Propose the creation of a new SuperDARN task force to assess different methods for velocity correction, through estimation of the refractive index:
 - 1. Directly from SuperDARN Data.
 - 2. Directly from electron density models.
 - 3. Indirectly through comparisons of SuperDARN data with insitu spacecraft measurements of plasma flow.
- The task force will develop a new framework for systematic calibration of SuperDARN velocity measurements.

Questions to Answer

- How should this correction be implemented? As a line-of-sight velocity correction model (next slide)?
- Should this be an optional process to apply to the data? Yes! This
 correction is more important when quantitative analysis is needed.
- Where in the SuperDARN processing should this be applied?
 - As part of FITACF? But FITACF does not include geolocation.
 - As part of the production of secondary data products or during data visualisation? But that would mean changes to a wide range of software.

Implementation

- Develop a new framework for systematic calibration of SuperDARN velocity measurements.
- Need a line-of-sight velocity correction tool that the whole community can apply to data on a simple routine basis.
- Need a model correction that varies with:
 - Time of Day (MLT?)
 - Day of Year
 - Position in Solar Cycle (F10.7?)
 - Magnetic Latitude (AACGM?)
 - Geomagnetic Activity (Kp?)

Summary

- Without resolution of the refractive index problem, models and data assimilation schemes of ionospheric plasma flow will not be fit for the needs of future science and operational applications.
- The SuperDARN community needs to provide a state-of-the-art capability for the calibration of the line-of-sight velocity measurements that it makes.
- I don't know the answers a task force will provide the concerted effort required to develop a new framework for the systematic calibration of SuperDARN velocity data.

