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Natural and artificial electron density gradient structures in the E- and F-region

Field-aligned irregularities (FAIs)

• Natural occurrence

− Caused by plasma instabilities (Fejer & Kelley 1980) 
and associated with electron precipitation (Kelley+ 1982)

− Drift with E x B velocity in F region, other velocities (e.g. 
ion-acoustic) in E region

− Useful HF radar backscatter targets for studying plasma 
drift and hemispheric convection (e.g. Chisham+ 2007)

• Artificial generation

− Transmitter wave heats the ionosphere when it is in 
resonance with plasma frequency or upper hybrid 
frequency (𝑓𝑢ℎ)

− Kelley rocket experiment at Arecibo (1995) provided first 
in-situ confirmation of artificial FAIs

− Conventional wisdom: tune heater frequency just below 
F-region peak plasma frequency (foF2)

(fig. adapted from Kelley+ 1995, Gurevich+ 2007)
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HAARP transmitter parameters for upcoming imaging campaign

Motivation

• Want reliable means of generating strong, widespread FAI region using HAARP to provide coherent 

imaging target.

• If we want to study FAI impacts on HF propagation, we need be able to reliably generate them.

• How can we best use a heating transmitter (like HAARP) to generate F-region FAIs?

• What heater parameters most efficiently generate F-region FAIs over a large geographic region?

→ Parameter variation experiments at HAARP Polar Aeronomy and Radio Science 
(PARS) summer schools 2023, 2024 and January 2025 campaign
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Determine whether broader beam 

produces strong, widespread FAIs

PARS 2023 – beam pattern variation

3 heater beams:

3 identical* 1-hour experiments

• Heating plan:

− Alternate 5-minute heater-on and -off times

− Heat twice each with L0, L1 and L2 beams

• Start times (UTC):

− Aug 8 22:30; Aug 9 03:00; Aug 13 21:37

beam peak power 3dB 1st null

L0 0 4.4 9.9

L1 6.9 3.4-11 16

L2 12 7.3-16 22

zenith angle (°)
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PARS 2023 – experiment geometry

1-hop ground scatter band

Digisonde stations (also at HAARP)

HAARP L0, L1, L2 beam main lobes projected to 400 km 
altitude

Kodiak Island SuperDARN (KOD) field of view

HAARP (in KOD beam 8; field line in beam 8-10)

KOD beams 5-12
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Kodiak SNR – 2023-08-09

• Clear heating “blob” over HAARP observed in 

KOD SNR

• L0 and L1 heating produced backscatter over 

HAARP; L2 returns are shifted in range

• Backscatter in beams farther from HAARP 

likely located in beam side lobes; actual FAI 

region probably confined to central beams
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Kodiak SNR – 2023-08-08, 08-13

• “Blob” missing during some heating 

periods

• Significant near-range noise → Es?

• Consistent, weak “blob” appearance
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Kodiak SNR statistics in high-res range gates 20-60
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Stimulated electromagnetic 

emissions (SEE)
SEE measurements during the August 9 experiment 

show strongest upper-hybrid spectral features 

during L1 heating.
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*What was the foF2?

Experiment time 
(UTC)

Estimated 
foF2 (MHz) - 
ionosonde

Estimated 
foF2 (MHz) - 
PFISR

Heater 
frequency 
(MHz)

Aug 8, 22:30-23:30 5.50-5.75 5.8-6.6 5.95

Aug 9, 03:00-04:00 5.75-5.90 6.1-6.5 5.95

Aug 13, 21:37-22:37 6.10-6.20 6.5-7.5 5.80

• Gakona and PFRR ionosondes were 

down or intermittent

• Eielson ionosonde and PFISR were used 

to obtain foF2

• IGRF added to compute 𝑓𝑢ℎ profiles

• Strongest SuperDARN returns and 

SEE spectral features appear to have 

been generated when the heater 

frequency was at or just above the 

ionosonde-estimated foF2

→ Need to better understand FAI 

dependence on 𝑓0 / foF2



116/5/2025

heating

Determine ideal heater frequency relative to foF2 for FAI generation

January 2025 – foF2 variation

• Tried sweeping heater frequency around foF2 

at PARS 2024 → foF2 in forbidden 

transmission band, unable to heat near it

• January 2025: heat at F-region sunset, let foF2 

descend through constant heater frequency

• Three experiment times (UTC): Jan 30 01:00-

02:30, 03:30-04:30; Jan 31 01:10-02:30

• Heating plan: determine foF2 from Gakona 

Digisonde and oblique ionogram, heat 100-500 

kHz below and wait for foF2 to descend
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2025-01-30: SuperDARN returns

01:00-02:30 UTC

• SuperDARN beams have different SNR:

1. Returns in some beams are missing 
intermittently

2. Other beams with returns occasionally show 
significantly different overall SNR compared to 
adjacent beams (e.g. compare beams 7 and 8 at 
01:00).

Interference from nearby transmitter caused 
SuperDARN beam dropouts.

• SNR range features:

1. Near-range high-SNR returns are present for 
most of this time period

2. Multiple ground scatter bands evident

Most likely blanketing sporadic-E during experiment 
time.
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2025-01-30: SuperDARN returns

03:30-04:30 UTC

• SNR is generally more consistent across 

beams, but some issues remain

• SNR range features:

1. Near-range high-SNR scatter is no longer 
present

2. Heated “blob” over HAARP appears at 03:34 
when heater frequency is lowered from 7.3 MHz 
to 5.95 MHz

3. Multiple ground scatter bands still present, 
motion is not strictly along SuperDARN beam 
direction

Blanketing sporadic-E
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2025-01-31: SuperDARN returns

01:10-02:30 UTC

• SuperDARN beams have different SNR:

1. Returns in some beams are missing 
intermittently

2. Other beams with returns occasionally show 
significantly different overall SNR compared to 
adjacent beams (e.g. compare beams 7 and 8 at 
01:23).

Interference from nearby transmitter caused 
SuperDARN beam dropouts.

• SNR range features:

1. Near-range high-SNR returns are present for 
most of this time period

2. Quasi-periodic high-SNR bands; move 
throughout experiment period

Blanketing sporadic-E.
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Ex: BC development and fadeout (1/30)

Transient SEE features

• Heating at 9.6 MHz, foF2 descending from about 9.3 

MHz to about 8.9 MHz in spectrogram period

• “Broad continuum” (BC) develops along with 

“downshifted maximum” (DM) and “upshifted maximum” 

(UM) at turnon

• Spectral features do not return until heater frequency is 

adjusted at 02:16:00 UTC

→ Transient SEE features may be associated with foF2 

descending from above to below heater frequency, but 

foF2 is not known to sufficient precision yet.

BC
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Summary of results

• The HAARP L1 beam (moderate width) most effectively generated strong FAIs 

over a large region.  L0 beam (narrow) was also effective over a smaller 

region.  L2 beam (widest) produced inconsistent return SNR.

• The three August 2023 experiments likely spanned different heating regimes 

relative to the foF2 and 𝑓𝑢ℎ. 

• Interpretation of SuperDARN data from January 2025 experiments is 

complicated by blanketing sporadic-E; please help!
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KOD SuperDARN imaging array

1 km

~550 km
HAARP

~100 km

Bistatic imaging campaign geometry

• Receiving array deployment in progress
• Kodiak SuperDARN is signal of opportunity
• Data collection during PARS 2025 heating 

(August) and surrounding time
• Proposed heating experiments will test 

system resolution in cases of drifting FAIs and 
FAI development near the F2 peak

(fig. adapted from Cummings+ 2024)
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Questions

• How can we better understand what was happening in the ionosphere during 

previous experiments?

• How can we better use SuperDARN as a diagnostic tool (and bistatic radar 

transmitter?) in an upcoming imaging campaign?
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Extra slides
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dB

dB

dB

Heating scenarios

• foF2 < peak 𝑓𝑈𝐻 < 𝑓0

(underdense): no resonance 
with heater wave except 
with intermittent ionosphere 
density variation

• foF2 < 𝑓0 < peak 𝑓𝑈𝐻 :

upper hybrid resonance 
near ionosphere peak

• 𝑓0 < foF2 < peak 𝑓𝑈𝐻

(overdense): upper hybrid 
resonance at lower altitude
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heating in resonant 
cavities at altitude 
where 𝑓0 = 𝑓𝑢ℎ
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Artificial FAI generation
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plasma expelled up field lines

1

elongated FAIs develop
(actually a spectrum of 
transverse lengths)

Artificial FAI generation
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Experiment design

FAI generation at HAARP – 2024 PARS experiments

• Vary heater frequency relative to foF2

• Experiment plan

− Sweep 𝑓0 from below foF2 to above, and back down

− Two different sweep rates: 

▪ Fast (60 kHz/min) in case of volatile ionosphere 
conditions

▪ Slow (20 kHz/min) to maximize frequency resolution 
with SuperDARN measurement cadence (1 minute)

− Adjust center frequency just before experiment 
depending on foF2 estimate

• Two experiment periods: foF2 estimate

− Aug 14 21:30-22:00 UTC 6.0-6.1 MHz

− Aug 15 02:30-03:00 UTC 6.2-6.3 MHz

estimated foF2
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First results

FAI generation at HAARP – 2024 PARS experiments

• SuperDARN

− Timing of backscatter aligns with 
experiment plan

− Backscatter returns are brighter during 
Aug 14 experiment

− Aug 14 experiment missing returns in part 
of downward sweep

→Heating closer to foF2 on Aug 14

→Lower-altitude heating on Aug 15

fast sweep 
(60 kHz/min)

slow sweep 
(20 kHz/min)

dB

dB
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First results

FAI generation at HAARP – 2024 PARS experiments

• SEE measurements

− DM, UM, BC, BUS again observed

− Broad structures (BC & BUS) brighten 
and broaden with increasing heater 
frequency

− Upshifted structures much stronger in 
Aug 15 experiment

→ Stronger reflected/stimulated signal 

during low-altitude heating

BC: broad continuum
BUS: broad upshifted structure
DM: downshifted maximum
UM: upshifted maximum

UM

DM

BUS

BC
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