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The Problem

* Sporadic-E
measurements are not
available in locations
without sounders or
radars

* GNSS Radio Occultation
(RO) has shown promise,
but the mapping between
RO perturbations &
sporadic-E characteristics
is non-trivial

* Solution: improve RO
techniques by comparing
& combining with
ionosondes
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* GNSS Radio Occultation (RO)
Measurements of Sporadic-E

e Techniques
* Limitations

* Global Empirical Model of
Sporadic-E Occurrence Rates
(GEMSOR)

Overview
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Measuring Sporadic-E: lonosondes

* lonosondes provide a direct measurement of sporadic-E layers

* Global coverage with large gaps (oceans, arctic, etc.)
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GNSS Radio Occultation

* GNSS-RO techniques use two satellites (GNSS and LEO) to probe the path between

 COSMIC-II and Spire (commercial CubeSats) currently provide over 20K daily occultations

GPS satellites
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[https://www.nesdis.noaa.gov/current-satellite-missions/currently-flying/cosmic-2]
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GNSS-RO Measurements of Es

* GNSS-RO has ideal geometry for locating/monitoring

* Two overarching approaches for characterizing

Altitude [km]

thin ionospheric disturbances like Es

sporadic-E

A 4

> Phase perturbations (TEC)
> Amplitude fluctuations (Sa)
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Fig. 3. An example of the detrended TEC, TEC, used to calculate the altitudes
corresponding to the TEC perturbation, ATEC, caused by a sporadic-E layer. The
dash-dot line corresponds to the altitude of peak TEC; while the dashed line is
associated with the first zero point below the peak (base).
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Modeling Sporadic-E Impacts to RO Signals
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GPS L1 Amplitude & Phase for Various Es Lens
Strengths - Gaussian Lens
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Convolution Neural Network (CNN) Approach

Ellis et al. (2024) used a CNN to
characterize Es from RO observations

lonosondes used as ground-truth: 150 km
separation & 30 min — 36,521 samples
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CNN Intensity
Estimates

* CNN shows significant
improvement in foEs
estimates compared to
traditional techniques

* MAE = 0.6 MHz
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* GNSS Radio Occultation (RO)
Measurements of Sporadic-E

* Techniques
* Limitations

* Global Empirical Model of
Sporadic-E Occurrence Rates
(GEMSOR)

Overview

COSMICZ: 5909

Spire: 16609

[Courtesy of Dong Wu]
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KLE Modes & Combining
Datasets

* To increase temporal resolution,
a Karhunen-Loeve Expansion
(KLE) was implemented

* Then, spatial & temporal data
were combined & scaled such
that:

* Relative temporal trends
remain unchanged

* Time profile scaled & shifted
such that daily average
matches spatial data

* 0% < OR < 100%

90
60
30
0
-30
-60
-90

Geomagnetic Latitude, ¢ (deg)

(8]

S

2O (au)

60
«
1
1
[)

o w o ©
) S S S

'
D
=
()

Geomagnetic Latitude, ¢ (deg)
S =

1

a? t(t) (a.n)

[Parsch et al., 2024]

(=]

400 800 1200 1600 2000 2400 — 0
Time of Day, t (HHMM)

400 800 1200 1600 2000 2400 )
Time of Day, t (HHMM)

0

i 0 @0
L 90 2 90 2 —
g * ¥ 60 60 -
‘ » Yy &
30 30
-
0 0
-30 -30
-60 A - -6
-90 -90
-180 -120 -60 0 60 120 180 -180 -120 -60 O 60 120 180 -180 -120 -60 O 60 120 180
Longitude, 6 (deg) Longitude, 0 (deg) Longitude, 6 (deg)
ol b0 0
o, oy a3
A~
-~ . ~a ’/ s 2 J 2
\‘ / /n \K ; \\ )’ - .
\\ /' o v /‘ \!\ ﬁ/’ !\ < i \I—'-I’.-".’.
\ ’ L = e
n >3 2 )
\ A
\./
5555552853545 5585552258585 5855552858544
Month Month Month
Pt Pt ot
1 2 3
90 90 m—
=
# -_— 30 B8 -_—
0 0
90 Y 90"

400 800 1200 1600 2000 2400
Time of Day, t (HHMM)

Pt ot ot
oy ay Qg
A~y
'--\.\ )./ - 1 'S 1
\ / L § Wiy / L a .
L) e \ / [ § " g N
\ » 0 5 0y LR T U
\ / N ,./ P S
= s
\ 1 l B l
\ ]
N »
“w
SO E>mgD ool > oo SO E>NgD oMoy > oo SO R RS Mol >0 g
S o =] Q O < o = Q O o S & = Q O
SEEISAETEA0ZAS  SAS<SSTEE020°  SAZISIST L4024
Month Month Month

= KLD
- = = Interpolation

0.05

(a.u)

Ot

Y.

-0.05

= KLD
= = = Interpolation




Global Empirical Model of Es Occurrence (GEMSOR)
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Summary

* Monitoring disturbances globally is challenging,
but GNSS radio occultation (RO) provides truly

Altitude [km]

global coverage to cover gaps in ionosonde 70-
networks .

* CNN model shows significant improvement in
detection and classification
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* GEMSOR model provides climatological
occurrence rates for fbEs = 3 MHz; publicly
available in Open Science Framework (GEMSOR-
OSF) or via NASA/CCMC
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https://osf.io/fg37m/?view_only=658c4adc8ece449592b739d6ac506b37
https://osf.io/fg37m/?view_only=658c4adc8ece449592b739d6ac506b37
https://ccmc.gsfc.nasa.gov/models/GEMSOR~1/
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Backup Slides: Auroral-E
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GPS L1 Amplitude & Phase for Various Es Lens
Strengths - Gaussian Lens w/ Turbulence
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