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ISSI Working Group Objective:

* ‘To create the first definitive textbook which covers all aspects of incoherent
scatter radar (ISR) techniques, theory and applications with
particular relevance to the fields of space and atmospheric physics’

* (To put together the text book we wish we had when we teach the subject /
have new students and researchers coming onboard / host ISR summer
schools)
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Incoherent scatter radar: The experimental (radar) view

Suppose we transmit a wave towards a plasma and measure the scattered wave:
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Measurable experimentally Physics info is here!
(1 for backscatter)
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Radar cross-section of ionospheric plasma

Assume a beam filling plasma at F region altitudes (300 km) with very high electron
density (1E12 electrons per m3 - BEST CASE):

Classical electron scattering cross-section 0 = 107 25m? /e~

Assume a pulse length of 10 km.
Assume a cross-beam width of 1 km (~ Arecibo).

Total cross section is then (10 km x 1 km x 1 km x 1E12 m”-3 x 1E-28 m”-2/e-):

Otot ™ 10_6m2

-60 dBsm! Are we going to be able to do this at all?

NB: Born approximation is very valid, since total amount of scattered power in the volume
~ 1E-12. So we can make full range profiles if we can detect the scatter.
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Detectability of scatter from ionospheric plasma

For fraction of scattered power actually received, assume isotropic scatter
and a BIG ~100 m diameter antenna:
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About -80 dB (1E-8): not much. So:
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So an Arecibo-size radar, with 1 MW transmitted signal, receives
10 femtowatts of incoherently scattered power from free
electrons in the ionosphere. Arecibo, PR

Decommissioned
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Detectability of scatter from ionospheric plasma

What matters, though, is the signal to noise ratio:
Proise = (kBTeff) (BW)

Typical effective noise temperatures ~100 to 200 K at UHF
frequencies (430 MHz, say).

Assume the bandwidth is set by thermal electron motions in a
Boltzmann sense:
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The Universe is our RFI
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Detectability of scatter from ionospheric plasma

Finally,
Pooise ~ 2 x 107PW

S/N ~ 5

Workable!

But you need a megawatt class transmitter and a huge (Arecibo size!)
antenna.

1950s: technology makes this possible (radio astronomy + construction =
large antennas, military needs = high power transmitters)

Happy accident: this calculation is WRONG — signal is >40X stronger

because thermal motion of electrons is set by ION MOTION (bandwidth is
~40X smaller)
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The lonosphere = A Box Of Thermal Electrons (“Soft Target”)

@ Scatter from targets spaced by the Bragg wavelength (\/2) add h - T‘T
vie_

constructively Il ! Il
@ Scatter from a large number of electrons samples the Fourier I ]
transform of the electron density distribution at the Bragg

wavenumber Closeup:

@ Thermal plasmas are naturally full of a whole spectrum of waves Scatter from

@ ISR is Bragg scatter from those thermal waves that match the Bragg one electron

wavenumber oe =107 ®m? Je”
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Plasma Theory: Dressed Particles

Plasma Line 5 (k. w)
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Scattering comes
from electrons
(light mass), but
their fluctuations
contain ion
information as
well!



lon-Acoustic Mode (“lon Line™): Electron and lon Information
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Langmuir Mode (“Plasma Line”): Precise Electron Information, In the Debye Sphere
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*Weak!
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lon Line Spectra: Millstone Hill (60 sec integrations)
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Plasma Line Spectra: Millstone Hill (60 sec integration)
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Power Spectral Example: Dependence on Plasma Temperature (Te=Ti Case)

le7/
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Basic parameters: 15| — Te=Ti=2000K
Electron density g ' —— Te=Ti=3000 K
Plasma temperature 5 1.00 ~_ — —— Te=Ti=4000 K
LOS velocity é ~— __—
lon composition N 0.75 ~—
)
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More exotic: S 0.50
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Photoelectron spectra
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System Scale Application: The Geospace Plume

* SED base/plume formation SED Passage through

Multiple Ground-Based Diagnostics:

Magnetosphere / lonosphere / Plasma

* Roles of SAPS, convection, Cold Plasma Flows More sampling needad!
PEF, and winds
* Global M-I-T Coupling context: ~_ ., % DS ey
Subauroral plasma influences : o e '°g"?_ff”s‘fﬁ_;‘""’s"z.'s?]_‘_”‘ 3’ m—
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ISS| Working Group: Incoherent scatter -
An invaluable tool in the field of space -

: v i\
and plasma physics :

/llll‘I'l; T‘“l\\\\\m\\ \

“EISCAT-3D; Norway

Outcome:

* Textbook will be open access (downloadable pdf)
in the ISSI Scientific Report Series

» Supplementary computer code / exercises online

* Aimed at a broad audience, including plasma physicists, radio scientists,
space physicists, and engineers.

e Suitable for Masters/PhD students and above.
* Publication expected ~2027/2028
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The Working Group
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‘"he Book Overview

prefacesforward  Masters/PhD level

" * Bookwill concentrate on

| aspects of ISR not covered in

ntroduction Mot Hito " depth coherently, elsewhere

* Paralleltheory chaptersto

provide students with a choice:
 Dressed test particle
(Hagfors, Pecséli)

T o * Fluctuation - Dissipation
T (Farley, Kudeki,Milla)
| 7 MemsbemARnRE * Plasma kinetic
(Salpeter, Sheffield)
' + Discussion of different

s signal iatiic and pararter smaton - approaches also included

* Aimtoinclude full theoretical

e —— derivations
T g spten e otherGeospace nstumens * Additional website with GUlIs /

computer code

Code Examples

1
Future Directions Appendhes R - -
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Example: Circuit Based Derivation of Incoherent Scatter
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Summary

» Textbook will be open access ISSI Scientific Report Series

 Masters / PhD level

* Publication date estimated 2027/2828

* Website / code repository in addition

« WG members will reach out to the community for co-authors / feedback etc.
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