Using vorticity to characterise meso-
scale lonospheric flow variations
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BACKGROUND

(1) The large-scale behaviour of ionospheric plasma flow and its response to driving from the solar wind and magnetosphere are well-known, but the drivers and
characteristics of the flow on small and meso-scales is poorly understood. Hence, ionospheric models typically only capture the large-scale behaviour.

(2) Measurements of ionospheric flow vorticity can be used for studying ionospheric plasma transport processes over a wide range of spatial scales. Here, we
present measurements of probability density functions (PDFs) of ionospheric vorticity measured by the Super Dual Auroral Radar Network (SuperDARN), over a
six-year interval (2000-2005 inclusive), covering the entirety of the northern hemisphere high-latitude ionosphere.

(3) The vorticity PDFs can be subdivided for different Interplanetary Magnetic Field (IMF) directions, which also allows the separation of the observed PDFs Into
two distinct components. These components relate to: (1) The large-scale ionospheric convection flow driven by magnetic reconnection; (2) Meso-scale

processes such as turbulence.

ANALYSIS METHOD
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FIGURE 3 » IMPACT — Considering plasma flow due to meso-scale structures will significantly affect ionospheric Joule heating estimates.

SUMMARY/CONCLUSIONS: (1) High-latitude ionospheric vorticity PDFs can be separated into two distinct components relating to large-scale and meso-scale
processes. (2) The large-scale vorticity PDFs are single-sided and controlled by the large-scale convection flow. (3) The meso-scale vorticity PDFs are double-

sided and symmetric, and are independent of the IMF direction. (4) These PDFs vary systematically with ionospheric location. (5) Future models of ionospheric
flow need to consider these meso-scale variations in order to iImprove estimates of processes such as Joule heating.
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