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Poynting Vector and Theorem

* Poynting vector shows the direction of electromagnetic energy flow.
* V-S+2+]-E=0
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Poynting Flux in the Coupled Magnetosphere-lonosphere
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Figure 1. Illustration of a magnetic flux tube conjugate to the auroral acceleration region
with incident Poynting flux and its conversion to energized particles and joule heating of

the ionosphere. Wavelength of wave fluctuations not to scale. Wygant et al [2000]

* A key agent transporting EM field and energy.
* Quasi-static (DC) vs Alfvenic (AC).
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Dayside

Alfvenic Poynting Flux
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Bursty bulk flow braking
LFM modeling [Zhang et al. 2012]

* Alfvenic power is preferred at two zones: dayside and nightside.
Non-trivial dayside AC power under northward IMF.
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FAST statistics
[Hatch et al. 2017]



Ultra-low frequency wave and field line resonance
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* Oscillating solar wind can excite magnetospheric ULF waves in the form of
toroidal mode field line resonance.

* What is the role of solar wind fluctuation in powering the ionosphere?
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The Multiscale Atmosphere-Geospace Environment Model
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* GAMERA global MHD mode..
* Idealized solar wind driving conditions.
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Alfvenic Poynting Flux
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* Significant amount of Alfvenic Poynting flux enters the ionosphere driven
by solar wind dynamic pressure fluctuations under northward IMF.
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Wave mode analysis: toroidal mode FLR
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* Toroidal mode FLR where source frequency matches local magnetic field
line eigen frequency.
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AC vs DC
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Hemispheric integration of AC Poynting flux is more than half of DC Poynting flux
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* There is an optimal period for AC Poynting flux to maximize:

— Too short period waves need to propagate deeper to find a resonant field line;
— Too long period waves can only resonate with the outer most field lines.
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(b)

~ Pedersen Conductance Dependence
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* More conducting, more reflective.
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An Unexpected STEVE event at high latitude during quiet times
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* Nsw/Pd dropped by 40%.

Gallardo-Lacourt et al. [2024]
NCAR | Poynting Flux Input and Effect

12 ycar 2025 SuperDARN Workshop| (Dong Lin, Idong@ucar.edw)



2023-03-27T06-15-00
BG1o 1
0.16W S

80" \ 0.2

High Alt S// [mW/m?]

max: 0.3 e et 08
min: -0.5 00 ML

=30 =20
SM-X [Re]

-0.8 0.0 0.8

-24 -16 -8 0 8 16 24
Residual Field [nT]

CPCP

(North/Soufh)

85.16 / 93.06 [{V]

-10
SM-X [Re]

10°
Pressure [nPa]

10!

10?

SM-Z [Re]

100 A

90 4

& [kV]

804

20.0
= 17.51
2150
o

T
12.5

./msphere.mix.h5

—— NORTH
—— SOUTH

M

\/\/—'WM
S A

A

@
on
=

Joule [GW]
[+1]
o

leZSW

/\/\/_‘A

NumFlux [#/s]
[T
o N
S W
@

o
-
o

[SENERN]
=

o

s

Poynting Flux [GW]

Oﬁ:bﬂ
20230327

06 “30 UE.I4O 06 .ISO OT.IOO
20230327 2023-03-27 20230327  2023-03-27
uTt

06:‘10 06 “ZU
20230327 2023-03-27

* Enhanced nightside Alfvenic Poynting flux during brief magnetospheric
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Conclusions

Solar wind dynamic pressure fluctuations drive electromagnetic energy input to
the ionosphere on the dayside.

Pd fluctuations excited toroidal mode FLR converts into field-aligned Poynting
flux.

The AC Poynting flux makes up more than half of DC Poynting flux input.

Pd fluctuations driven S// is dependent on Pd frequency and ionospheric
conductance.

Enhanced AC Poynting flux during a brief magnetospheric expansion may
account for the observed unexpected high latitude STEVE during a quiet time.
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