Coupling of Meso-Scale Polar Cap flows Across the Auroral
Oval Poleward Boundary to Oval Disturbances
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SuperDARN / IMAGE-WIC [Yong Shi et al., 2012]
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Polar Cap Convection:
* Had been considered smooth; 2-4 cells; A, . important

SuperDARN, with ASlIs revealed much localized flow structure
e Some structures long lived (~2-4 hrs sometimes)

Can cross into oval/plasma sheet (localized
driven reconnection), leading to

* lonosphere flow channels\
plasma sheet flow bursts

* Brings new lower entropy
plasma into plasma sheet |

* Important oval disturbances|
- PBIs '

Streamers

Omega bands (DAPS)

Substorm onset, and subsequent surge, spatial size and duration

Laydown events



First measurement of polar-cap flow to oval disturbance (Sondrestrom/Goose BAY)
[de la Beaujardiere+, 1994]
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Flow bursts every ~10-20 min; PBls on
westward edge of bursts

E—— Goose Bay radar/DMSP: Bursts extended from
= within P.C. to well within oval .
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Equatorward extension related to streamers.

e — PC flow-PBI (Rankin Inlet radar, ASI)
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THEMIS ASI image and SuperDARN l-o-s flows (all beams, focus on Rankin Inlet)
[Bea Gallardo-Lacourt+, 2013]
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Famous SuperDARN figure: Flow channels extend equatorward with streamers:
* Extend from polar cap (A = 80°) to east side of 2 streamers, 1 Harang aurora
* Then along streamer edge as far equatorward as there are echoes
* Upward (downward) FAC along west (each edge)

It is the flow channels and associated ionization that cause the substorm H bays
(flow channels can extend from well within polar cap, across PC boundary, to plasma sheet)



Substorms
To trigger substorm onset instability: must have abrupt change in inner
plasma sheet conditions:

» Breakthrough: Streamers to onset (Nishimura+ 2009)
« Streamers reflect: plasma sheet flow burst, reduce entropy flux tubes
= low entropy flow channel to onset

« Changes tail entropy %Esgli?pztoggogigection for instability

PBIl-Streamers to onset seen
for 100’s cases

= Implies polar cap flow
channels lead to onset

Streamer obs. infer flow to
onset

Can directly test using ground
radars
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Streamers to onset seen for 100’s
cases

= Can directly be tested using ground radar
observations of flows

Early example (Lyons et al., 2009)

= Southeastward flow channel to time and
location of onset

Now seen for 10’s of examples

UT 0650 0710 0720

Proton precipitation before onset Onset electron precipitation



Tail flow channels/bursts (thus polar cap flows) lead to
onset

= But why growth phase arc and onset instability E-W
aligned, and onset expands longitudinally!

= Related to why onset streamer shows flow directed to
onset, but often don’t contact onset arc

Must consider what is E-W aligned in inner plasma sheet!
= Energy dependent magnetic drift!

= RCM modeling of bubble introduced at tail outer boundary
[Wang+ 2018]

* Flow burst azimuthal spreading by E and B drift
causes E-W orientation of bubble and azimuthal flows

« Dawnside: within bubble/down R1 FAC (DAPS)
[J. Liu+ 2020]

 Duskside: within down R2/SAPS equatorward of bubble
[Makarevich+ 2011; Lyons+ 2015; Gallardo-Lacourt+ 201

Took advantage of SuperDARN analysis breakthrough [8ristow+, 2016, 2022]: High-spatial-resolution
velocity measurements derived using Local Divergence-Free Fitting of SuperDARN observations
(followed by less-global approach [nishimura+ 2024])



4 min later

Several 100 m/s channel from fomin later: Flow channel
cap = Connects to DAPS increase

* Connects to DAPS increasénd to SAPS increase

2012 Nov 11 (between cell flow channel)
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See also for substorm flow channels [Lyons+, 2021. 2022]
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Variant of streamers to onset scenario

2012Feb19  0500-0511 UT: Poleward boundary streamer tilts equatorward:

CME storm « Reaches onset MLT, onset first detected 0511:21 UT
= polar cap flow channel adjacent to tilting boundary streamer leads to onset
e Also: Expansion activity expands westward via connection to tilted streamer

2012—-02-49/04:45:42
(Lyons+, 2013, 2018; Yadav+, under review)
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Evidence that enhanced meso-scale polar cap flows may, in
general, be important for auroral activity and poleward expansion.

Such flows after substorm onset: possibly important in controlling poleward

expansion and duration of post-onset auroral activity
[Lyons +, 2011]: .




2010 Mar 17: By > 0 “Lay-down explosion” Red Line Imaging (Res. Bay, Rank), THEMIS ASI

(PC arc followed from 0330 to 0534 UT “explosion”)
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Multiple onsets: 0427, 0447, 0503 UT

Large “lay down” onset: 0534 UT.



2013 March 15: ~ 2hr pc arc trip across nightside polar cap

Then trace 15t over Alaska Trace 15t over Western Canada



BIMF, Ground AB

2013 Mar 15, 2-D Vel with PFISR
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Pc arc “lays down” along
oval poleward boundary

= Equatorward/westward flow
“pushing” pc flow from northeast

e Pc arc like a weather front = Oval becomes thin based
on aurora and PFISR n,

= Flow turning adjacent to oval
boundary
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Two More lllustrative Examples
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Summary

Radars & ASI revealed much polar cap localized flow structure
* Some structures long lived (~2-4 hrs sometimes), yielding multiple oval disturbances

Can cross into oval/plasma sheet (localized driven reconnection)
= Brings new plasma into plasma sheet, can have lower entropy
- Leads to ionosphere flow channels\plasma sheet flow bursts
= Lower entropy plasma intrusion leads important oval disturbances
- PBIs
Streamers
Omega bands (DAPS)
Substorm onset; subsequent spatial size and duration, including surge development

Dramatic “Laydown” events

Fundamental questions

Formation and propagation of structures across open polar cap field lines
= |ncluding connections to magnetosheath structure
= For localized and long-lived ("weather front”-like) structures

Physics of
= Localized triggered reconnection
- formation of lower entropy plasma sheet
- Relation to PBI and streamer formation (i.e., Ohtani and Yoshikawa, 2016; Ohtani+ 2018)



¢ In addition to apparently localized flow channels

** 4 hr red line movie [Y. Zou+, 2015] dramatically illustrates some polar cap
flow channels have long duration leading to multiple disturbances:
= Polar cap arc (thus flow channel) long duration (4 hrs!)

= Connection to oval and weak (~20 nT) disturbances
= Features, thus flows, map continuously from polar cap to oval

?' Weak northward IMF Bz;
variable By
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