Concerning the Stand-Off
Distance of the Bow Shock

D. G. Sibeck! and M. V. D. Silveira?
'"Heliophysics Division, NASA/GSFC, Greenbelt, MD 20771

2University of Sao Paulo-Lorena School of Engineering, Lorena, Brazil



Outline

* Bow shock and magnetopause definitions
* What use is a standoff distance?

* Past empirical studies

* The new velocity gradient method

* |Initial results

* Conclusion



01/01/2000 Time = ¢1:50:00 UT z= 0.00CR.

Bow Shock and SR
Magnetopause Definitions 1§

« Atrest, the magnetopause lies along the locus of ¥ [Rel

points where magnetosheath & magnetospheric 5. —
pressures balance. At subsolar MP 2V, =0

Earth

D‘ -

* Atrest, the bow shock lies upstream from the
magnetopause along the locus of points where fast mode
-5, -
wave speeds match incoming solar wind velocities. .
At subsolar BS = V, =V,,/4 (for large Mach numbers) _
—10. -
U. Michigan 1
* The stand-off distance A = Ry - Ryp BATS-R-US
N=6.25cm3
V =-400 km s

T=2x105K 0.
B,=5nT \auel at come

W A

Solar Wind Min:

| v, [5]

Min: =
—400.
Max: +

28.

Vy gray scale WMpdy
V, contours

V vectors Hu

15. 20 —a00.

x [Re]



The Standoff Distance to the Bow Shock

* In gasdynamics, the standoff distance to the subsolar bow shock from the
subsolar magnetopause is given by:

A = Rgg - Rup = Rup * (1.1%(y-1)Mg2 + 2)/[(y+1)*M?]

* And empirical gasdynamic studies indicate that

A=1.1Ryp * Vouearn/Vsw = 1.1 Rup * Psw/ Psreatn

..depends on sonic Mach number Mg (known) and ratio of specific heats or
adiabatic mdexy g 5/3 or2or somethlng else). 1.1 is an empirical number.
(Spreiter et al., 1966).



Factors Controlling the Standoff Distance

* Itis a bit more complicated in MHD and kinetic codes

* Have to consider size and shape of the magnetosphere (depends
on pressure and IMF B,), solar wind M, and Mg, the spiral/radial
IMF orientation, and maybe more (e. g. Cairns & Lyon, 1996)...

* Let’s identify Rz and Ry, to determine whether 1.1 is a good
empirical coefficient and the appropriate value fory



Simulated Magnetosheath Calculations are
Easy to Understand

e Simulation
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Real Magnetosheath Calculatlons

THEMIS C July 24 2008

are Harder - "/ i
. . E
* Simulation Real < 1]
= 2} MP Bs 4 Magnetosheath |
élsé\ﬂ s O
N =4 | Messy s
—— LU IR Cg
£
4 <
V ¢ .
S | Sphere |Sheath SW 500
> | .
400r A=2.83R; |~ » ‘::
- | - £ 10}
M

: ' .1 BATS-R-US at CCMC 2
8 10 X (RE) 12 14 11 12 X(RE)13 14 15




Empirical Studies of Bow Shock and
Magnetopause Locations Define vy

* Where does all the scatter come from?

* Uncertainties in solar wind measurements
* Timing, spatial scale lengths, helium content

* Crossings never occur in equilibrium
(changing solar wind conditions cause
boundaries to move past spacecraft, not
vice-versa).

Farris and Russell (1991) have a study based on fit BS and MP positions

A =3.4R.
—

Nsw/Nsheath = Vsheath/ Vsw = 0.33
v=1.76
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A New Method Employing the Linear Radial
Gradient in Subsolar Velocity Vy
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Observations Confirm Linear Gradient
In Vy across Subsolar Sheath
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Our Plan THEMIS-C July 24, 2008

* 1. Fitline to gradient

e 2. Extend to find Ok

* Ryp Subsolar magnetopause, whereV, =0
* Rgs Subsolar bow shock, where Vy = Vg, /4 &
=

* 3. Then simultaneously
* 4. Check A=1.1 Ryp * Vougar/Vow and >
« 5. Calculate y = (1.1 +A/Ry,p)My2 -2.2) il
(1.1-A/Ryp)Myys2

—> Basicallyy ~ A

B (nT)




_r
_ ((b)
00) O
- &
- mm
AN o &
- a 9
O EEm— Uly
7)) n 3
g h%olu
O S5 S
O S 2
@) o O
| A o
0P S £
il mg
> 5 E
LLl o
1L 3
T Y

F.A0 1.25 —5.00

Hesp (Re)

1375

2000

Thanks to SPDF SSCWeb!



Boundaries Move Earthward as Solar Wind
Dynamic Pressure Increases
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Does Stand-off Distance Depend on Velocity
Jump at Bow Shock?

Closest Bow Shock, Furthest Magnetopause
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Summary

* Avariety of factors control the locations of the bow shock and
magnetopause.

e The same is true for the standoff distance between these
boundaries

* Linear velocity gradients mean we can estimate simultaneous
bow shock and magnetopause locations, and the stand-off
distance between them for steady conditions.

* Preliminary results indicate that the ratio of specific heats in the
solar wind is on the order of ~1.66 (=5/3) to ~2.00. More work
needed. ©
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