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Common Diagnostic: Mid-latitude TIDs as viewed in Global TEC

2024-10-10 -- 10-11: dTEC @ Lon =[-75.0, -65.0]E dTEC
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Traveling lonospheric Disturbances 2

21 Dec 2012 1400 UT - Alt: 250 km

*TIDs are Quasi-periodic Variations of F Region (@ e 3
Electron Density | |

*Medium Scale (MSTID) B N .
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From Frissell et al. (2016).
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Polar Vortex & Sudden Stratospheric Warmings 3

*Polar Vortex is a cyclonic winds system
located on the polar regions in the
stratosphere

*Driven by the increased temperature

difference and is spun up by the Coriolis
effect

*Occasionally SSWs break up the Polar
Vortex

°This causes a reduction in AtmOSpheriC Polar Vortex Geopotential height mean
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weaker daytime
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Averaged GW Activity

Wintertime: mean AIRS
stratospheric GW
variance poleward of 30 N

Dashed lines: wind
velocities > 40 m/s at 35
km altitude

Consistent: GW is
maximum in Europe -
much lower amplitude
over N America.

(cf previous slide)
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Non-local correlations
between stratospheric GWs
in eastern polar sector and
MSTIDs

Now look for non-local correlations.

Select GW at blue squares (polar):
Correlate with TIDs everywhere.

[1,-1] = [GW pos corr, neg corr]

Black contours = maximum polar night
jet (PNJ) in mesosphere (not
emphasized here)

Non-local correlation maximizes
between polar GW and mid-latitude
N American TIDs
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Strong non-local correlations
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Theoretical mechanisms

using HHAMCM

Daily cycle of GWs in the thermosphere
during strong polar vortex is strongly
affected by thermospheric wind

GW amplitude maximum extends
northwestward to polar latitudes (morning

hours LT)

Maximum GWs (and consequently, TIDs)
are seen during local daytime:

Tidal flow strongly poleward
GW momentum flux ~Yequatorward
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Becker et al (2002)
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21DEC—30DEC2016, 10’hPa (~300 km):
GW kin. energy (m2?s2) & (U,V) (ms™) & GW mom. flux (m?2s™)
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Summary: Cold Plasma and TID Dynamics at Mid-Latitudes
GW / TID correlations:

* TIDs have strong non-local response to GW / polar vortex configurations

* The correlation is persistent and points to substantial GW influence on TIDs
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Session ST2.6 Multiscale Solar-Wind-Magnetosphere-

ionosphere Interactions: Insights from Observations and
Simulations

Mon, 28 Apr, 14:00-17:55 (CEST) Room 0.94/95

Global ionospheric |-
disturbances during
the 10-11 Oct 2024
superstorm
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2024-10-10 -- 10-11: dTEC @ Lon =[-75.0, -65.0]E dTEC
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East-west Hemispheric comparisons: TEC & dTEC
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TEC Global Disturbances ik
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transpolar ionospheric conve Oct 10-11, 2024
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Response

> Prompt ionospheric responses (strong TIDs) at mid- and low latitudes on
both dayside and nightside to the arriving interplanetary shock and also
during IMF Bz sudden changes in orientation

> Dramatic density enhancements occur more often in American longitudes
than in Asian and European sectors

> Storm enhanced density (SED) at subauroral latitudes developed during the
early stage of storm phases, and polar cap tongue of ionization (TOIl)
occurred at a later time. Their time relationship implies possible
contributions from SED to TOI.
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Summary: Cold Plasma and TID Dynamics at Mid-Latitudes
GW / TID correlations:

* TIDs have strong non-local response to GW / polar vortex configurations

* The correlation is persistent and points to substantial GW influence on TIDs
Oct 2024:

* Promptionospheric responses at mid- and low latitudes on both dayside and
nightside to the arriving interplanetary shock and also during IMF Bz sudden changes
In orientation

 Storm enhanced density (SED) at subauroral latitudes developed during the early
stage of storm phases, and polar cap tongue of ionization (TOI) occurred at a later
time. Their time relationship implies possible contributions from SED to TOl

Multi-technique / multi-messenger data is central to insight
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