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1.1 Introduction of MSTIDs

n Definition: MSTIDs are wave-like disturbances in the ionospheric plasma density.
E Characteristics: spatial scale (100 - 500 km wavelength) and propagation (often 100 - 500 m/s).

) Primary Generation Mechanism:

. Atmospheric Gravity Waves (AGWSs): originate in the lower atmosphere, propagate upward into the
thermosphere and ionosphere.
. Perkins instability: The interaction between the ionospheric background electric field and the electron

density gradient results in the spontaneous growth of plasma wave-like disturbances.

n Other Contributing Factors:

. Neutral wind: Gravity waves propagating in the direction opposite to that of the neutral wind typically
exhibit a larger vertical wavelength, are less influenced by molecular viscosity, and have a higher
probability of upward propagation.

. Disturbances within the ionosphere, such as polar and equatorial electric current anomalies, solar
eclipse-induced ionospheric effects, and the diurnal terminator transitions caused by solar illumination on
Earth's surface, may also contribute to ionospheric disturbances.

. Polar vortex: these observations suggest that polar atmospheric processes are primarily responsible for
controlling the occurrence of high-latitude and midlatitude winter daytime MSTIDs.



1.2 Characteristics and mechanisms of poleward MSTIDs

> In the mid-latitude region of the Asia
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The statistical results of the Xinglong airglow
imager (40°N, 117°E) show that:

1. The occurrence rate of night-time poleward
MSTIDs is extremely low, accounting for only
about 4% of the total events.

2. The night-time poleward MSTIDs mainly
occur in summer (northeastward), and there are
also a few events in spring.

[ Lai C. etal., 2023]



1.2 Characteristics and mechanisms of poleward MSTIDs

> In the low-latitude region of the Asia 1. Poleward MSTIDs mainly occurs within 2 to 3
el hours near sunset, with the northwest direction

i being dominant.
2. The characteristics of these MSTIDs and
modeled atmospheric waves from the high-
resolution Whole Atmosphere Community Climate
Model (WACCM) suggest that nighttime MSTIDs in
FROW R OR YRR R RARERE RN ARSRS summer are likely connected to atmospheric
gravity waves (AGWSs).
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Fig. 9 Two-dimensional filtered GNSS-TEC maps over Taiwan on 29 April 2020 Fig. 8 The A\557 nm airglow images derived from Tainan Astronomical Education Area on 29 April 2020

[ Lai C. etal., 2023]



1.2 Characteristics and mechanisms of polarward MSTIDs

> In the western region of the America

Atmospheric gravity waves caused by intense atmospheric

convection can trigger the poleward MSTIDs.
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1.2 Characteristics and mechanisms of polarward MSTIDs

> In the eastern region of the America
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1.3 Scientific issues and research directions

» Previous studies on poleward MSTIDs have mostly been limited to a single station observation or in a
localized region. What are the characteristics of their propagation in continental region, and what factors

influence their process?

» The study investigated polarward MSTIDs in the mid-latitudes of the Northern Hemisphere by leveraging
the long-term continuous observations and extensive field-of-view coverage provided by the SuperDARN
radar network with the data from CN-DARN radars.
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2.1 Instruments and data
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2.2 Observation in the Asia-- SuperDARN radars
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» The CN-DARN radars detected a large-scale, long-

lasting (maximum: 6 hours) poleward MSTID event in

May 10, 2024.

> This event occurred within 2 hours after sunset.

SuperDARN (CN)



2.2 Observation in the Asia-- Airglow imager

GLat(°N)

» The Hejing All-Sky Airglow Imager observed the poleward propagation MSTID event.

» This MSTID propagates in the northeast direction, with a wavelength of approximately
450 km and a wave velocity of approximately 270m/s.
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2.2 Observation in the Asia-- Airglow imager

» The observations of the polarward MSTID by the CN-DARN radars,

and Siziwang All-Sky Airglow Imager are highly consistent.
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2.3 Observation in the America-- SuperDARN radars / GNSS-TEC
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» Observational data obtained from the e NAGTEC 202405090510 glon={100-90__
Americas and Europe also revealed MSTID Lne i
signals propagating in the poleward direction
during nighttime.
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2.3 Observation in the America--GNSS-TEC / Airglow imager
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» On May 10, 2024, the SuperDARN radar and GNSS-TEC data
in the United States jointly recorded the nighttime northeastward
propagation of MSTID.

» The Millstone airglow imager also observed MSTID spreading
northeastward at night.
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Summary: On May 10, 2024, post-sunset poleward MSTID were
occurred in the Asia, America, and Europe, with the duration
reaching up to more than six hours.



Nsse.

03 Discussing

3.1 Observation of neutral wind

3.2 Statistics of seasonal
variation of poleward MSTIDs

3.3 Simulation results of seasonal
variation of neutral wind

3.4. The conditions of the spatial
environment

3.5 Simulation results of neutral
wind affected by the geomagnetic
environment




3.1 Observation of neutral wind

> After sunset on May 10, 2024, the neutral wind deflected southwestward, and the occurrence time
was basically consistent with the polarward MSTID observed by radars.
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3.2 Statistics of seasonal variation of poleward MSTIDs
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» Seasonal Distribution: predominantly occur in summer, with fewer events in spring and autumn, and are

virtually absent in winter.

» Diurnal Variation: occurring primarily between sunset and midnight.

» Longitudinal Dependence: events are more frequent at Longjing (eastern site) than at Hejing (western site).
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3.3 Simulation results of seasonal variation of neutral wind

» The distribution of neutral winds during the geomagnetic quiet period shows seasonal
and local time differences. The equatorial component is the strongest on the night side
in summer, slightly weaker in equinox, and basically poleward in winter.
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Why are continental-scale poleward MSTID events uncommon? There may be other factors influencing the
neutral winds



3.4 The conditions of the spatial environment
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3.5 Simulation results of neutral wind--geomagnetic environment

» During geomagnetic disturbances, Joule heating and energetic particle precipitation
extend to mid-latitudes, driving an enhancement of the equatorward component of the
neutral wind. This enhanced flow then deflects westward due to the Coriolis force.
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The combined effects of the background neutral wind field and global energy input from space weather
maybe the generation mechanism for continental-scale poleward MSTIDs.
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Summary

New observation:
Continental-scale poleward
MSTID events have been
detected for the first time using
integrated observations from the
SuperDARN radar network, all-
sky airglow imagers, and GNSS.

Generation mechanism:

The combined effects of the
background neutral wind field and
global energy input from space
weather maybe the generation
mechanism for continental-scale
poleward MSTIDs.
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Thank You!
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